

V Semester B.A./B.Sc. Examination, Nov./Dec. 2016 (Semester Scheme) (Fresh) (CBCS) (2016-17 Onwards) MATHEMATICS - V

Time: 3 Hours

BMS Maximirks: 70

Instruction : Answerall questions.

PART-A

Answer any five questions:

(5×2=10)

- 1. a) In a ring (R, +, \cdot), prove that $(-a) \cdot (-b) = a \cdot b$; $\forall a, b \in R$.
 - b) Define subring of a ring. Give an example.
 - - i) Commutative ring without unity
 - ii) Non-commutative ring with unity.
 - d) Find the unit vector normal to the surface $xy^3z^2 = 4$ at (-1, -1, 2).
 - e) Find the divergence of $\vec{F} = x^2y\hat{i} 2xz\hat{j} + 2yz\hat{k}$.
 - f) Prove that $E = e^{hD}$.
 - g) Write Lagranges Interpolation Formula.
 - h) Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ by Simpson's $\frac{3}{8}$ rule.

where	x	0	$\frac{1}{6}$	<u>2</u>	3 6	4 6	5 6	1
	y = f(x)	1	0.8571	0.75	0.6667	0.6	0.5455	0.5

PART-B

Answer two full questions.

 $(2 \times 10 = 2)$

- 2. a) Show that the necessary and sufficient conditions for a non-empty subset S BMSCW of a ring R to be a subring of R are
 - i) $a \in S, b \in S \Rightarrow a b \in S$
 - ii) $a \in S, b \in S \Rightarrow ab \in S$.
 - b) Prove that every field is an Integral Domain.

OR

- 3. a) Show that the set of all matrices of the form $\begin{cases} a & b \\ 0 & 0 \end{cases} / a, b \in R$ is a non-commutative ring without unity with respect to addition and multiplication of matrices.
 - b) Fill all the principal ideals of a ring R = $\{0, 1, 2, 3, 4, 5\}$ w.r.t. +₆ and ×₆.
- 4. a) Prove that $(Z_7, +_7, \times_7)$ is a commutative ring with unity. Is it a Integral Domain?
 - b) State and prove fundamental theorem of homomorphism.

OR

- 5. a) Prove that a commutative ring with unity is a field if it has no proper ideals.
 - b) Prove that the mapping $f: (Z, +, \times) \rightarrow (2Z, +, *)$ where $a * b = \frac{ab}{2}$ defined by $f(x) = 2x, \ \forall \ x \in Z$ is an isomorphism.

PART-C

Answer two full questions.

(2×10=20)

- 6. a) Find the directional derivative of $\phi(x, y, z) = x^2 2y^2 + 4z^2$ at the point (1, 1, -1) in the direction of $2\hat{i} - \hat{j} + \hat{k}$.
 - b) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$, prove that
 - i) $\nabla r^n = n r^{n-2} \vec{r}$

ii)
$$\nabla \left(\frac{1}{r}\right) = \frac{-\vec{r}}{r^3}$$
.

OR

- 7. a) Show that the surfaces $4x^2y + z^3 = 4$ and $5x^2y 2yz = 9x$ intersect orthogonally at the point (1, -1, 2).
 - b) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, show that $\nabla^2 \left(div \left(\frac{\vec{r}}{r^2} \right) \right) = \frac{2}{r^4}$.

BMSCW

- 8. a) If $\vec{F} = \text{grad}(x^3 + y^3 + z^3 3xyz)$, find div \vec{F} and curl \vec{F} .
 - b) If ϕ is scalar point function and \vec{F} is vector point function then curl $(\phi \vec{F}) = \phi$ curl $\vec{F} + (\text{grad } \phi) \times \vec{F}$.

OR

- 9. a) If $\vec{F} = (x + y + az)\hat{i} + (bx + 2y z)\hat{j} + (x + cy + 2z)\hat{k}$, find a, b, c such that \vec{F} is irrotational then find ϕ such that $\vec{F} = \nabla \phi$.
 - b) Prove that curl (curl \vec{f}) = grad (div \vec{f}) $\nabla^2 \vec{f}$.

PART-D

Answer two full questions.

 $(2 \times 10 = 20)$

0. a) Find a cubic polynomial which takes the following data:

Ī	х	0	1	2	3
1	f (x)	1	2	1	10

b) Find f(1.4) from the following data.

X	1	2	3	4	5
f (x)	1	8	27	64	125

using difference table.

OR

- a) Evaluate ∆(e^{3x} log 4x).
 - b) Find f(7.5) from the following data.

X	7	8	9	10
f (x)	3	1	1	9

using difference table.

- 7. a) Show that the surfaces $4x^2y + z^3 = 4$ and $5x^2y 2yz = 9x$ intersect orthogonally at the point (1, -1, 2).
 - b) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, show that $\nabla^2 \left(\text{div} \left(\frac{\vec{r}}{r^2} \right) \right) = \frac{2}{r^4}$.

BMSCW

- 8. a) If $\vec{F} = \text{grad}(x^3 + y^3 + z^3 3xyz)$, find div \vec{F} and curl \vec{F} .
 - b) If ϕ is scalar point function and \vec{F} is vector point function then curl $(\phi \vec{F}) = \phi$ curl $\vec{F} + (\text{grad } \phi) \times \vec{F}$.

OR

- 9. a) If $\vec{F} = (x + y + az)\hat{i} + (bx + 2y z)\hat{j} + (x + cy + 2z)\hat{k}$, find a, b, c such that \vec{F} is irrotational then find ϕ such that $\vec{F} = \nabla \phi$.
 - b) Prove that curl (curl \vec{f}) = grad (div \vec{f}) $\nabla^2 \vec{f}$.

PART-D

Answer two full questions.

(2×10=20)

10. a) Find a cubic polynomial which takes the following data:

X	0	1	2	3
f (x)	1	2	1	10

b) Find f(1.4) from the following data.

X	1	2	3	4	5
f (x)	1.	8	27	64	125

using difference table.

OR

- 11. a) Evaluate $\Delta(e^{3x} \log 4x)$.
 - b) Find f(7.5) from the following data.

X	7	8	9	10
f (x)	3	1	1	9

using difference table.

12. a) Using Newton's divided difference formula find f(3) from the given data.

X	0	1	2	5
f (x)	2	3	12	147

b) Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by using Simpson's $\frac{3}{8}$ rule.

BMSCW

OR

13. a) Using Lagranges interpolation formula find f(2) from the following data.

X	0	1	3	4
f (x)	5	6	50	105

b) Using Simpson's $\frac{1}{3}^{rd}$ rule, evaluate $\int_{0}^{0.6} e^{-x^2} dx$.